Redis高级-主从复制
Redis高级-主从复制
从真实的生产事故说起
2021年双11期间,某电商平台惊魂一刻
凌晨2:30,Redis主服务器突然崩溃。瞬间,整个电商系统陷入瘘痪:
- 购物车服务不可用:用户无法添加、查看商品
- 用户会话失效:大量用户被强制退出登录
- 实时排行榜清空:双11热门商品榜单消失
- 秒杀活动停止:无法获取库存信息
影响范围:
- 直接损失:1.5小时服务不可用,损失订单800+万元
- 间接损失:用户体验下降,品牌形象受损,后续运营成本增加
根因分析: 这起事故的根本原因是采用了单机 Redis 架构,没有任何冗余和备份机制。这正是Redis主从复制要解决的核心问题。
业务场景中的高可用需求
现代互联网应用的“三高”挑战
在构建高质量的互联网服务时,我们面临着“三高”架构的挑战:
主从复制概念
知道了三高的概念之后,我们想:你的“Redis”是否高可用?那我们要来分析单机redis的风险与问题
问题1.机器故障
- 现象:硬盘故障、系统崩溃
- 本质:数据丢失,很可能对业务造成灾难性打击
- 结论:基本上会放弃使用redis.
问题2.容量瓶颈
- 现象:内存不足,从16G升级到64G,从64G升级到128G,无限升级内存
- 本质:穷,硬件条件跟不上
- 结论:放弃使用redis
结论:
为了避免单点Redis服务器故障,准备多台服务器,互相连通。将数据复制多个副本保存在不同的服务器上,连接在一起,并保证数据是同步的。即使有其中一台服务器宕机,其他服务器依然可以继续提供服务,实现Redis的高可用,同时实现数据冗余备份。
多台服务器连接方案:

- 提供数据方:master
主服务器,主节点,主库主客户端
- 接收数据方:slave
从服务器,从节点,从库从客户端
- 需要解决的问题:
数据同步(master的数据复制到slave中)
这里我们可以来解释主从复制的概念:
概念:主从复制即将master中的数据即时、有效的复制到slave中
特征:一个master可以拥有多个slave,一个slave只对应一个master
职责:master和slave各自的职责不一样
master:
写数据
执行写操作时,将出现变化的数据自动同步到slave
读数据(可忽略)
slave:
读数据
写数据(禁止)
主从复制的作用
- 读写分离:master写、slave读,提高服务器的读写负载能力
- 负载均衡:基于主从结构,配合读写分离,由slave分担master负载,并根据需求的变化,改变slave的数 量,通过多个从节点分担数据读取负载,大大提高Redis服务器并发量与数据吞吐量
- 故障恢复:当master出现问题时,由slave提供服务,实现快速的故障恢复
- 数据冗余:实现数据热备份,是持久化之外的一种数据冗余方式
- 高可用基石:基于主从复制,构建哨兵模式与集群,实现Redis的高可用方案
主从复制工作流程
主从复制过程大体可以分为3个阶段
- 建立连接阶段(即准备阶段)
- 数据同步阶段
- 命令传播阶段(反复同步)

而命令的传播其实有4种,分别如下:

主从复制的工作流程(三个阶段)
阶段一:建立连接
建立slave到master的连接,使master能够识别slave,并保存slave端口号
流程如下:
- 步骤1:设置master的地址和端口,保存master信息
- 步骤2:建立socket连接
- 步骤3:发送ping命令(定时器任务)
- 步骤4:身份验证
- 步骤5:发送slave端口信息
至此,主从连接成功!
当前状态:
slave:保存master的地址与端口
master:保存slave的端口
总体:之间创建了连接的socket

阶段二:数据同步
全量同步和增量同步
- 在slave初次连接master后,复制master中的所有数据到slave
- 将slave的数据库状态更新成master当前的数据库状态
同步过程如下:
- 步骤1:请求同步数据
- 步骤2:创建RDB同步数据
- 步骤3:恢复RDB同步数据
- 步骤4:请求部分同步数据
- 步骤5:恢复部分同步数据
至此,数据同步工作完成!
当前状态:
slave:具有master端全部数据,包含RDB过程接收的数据
master:保存slave当前数据同步的位置
总体:之间完成了数据克隆

数据同步阶段master说明
1:如果master数据量巨大,数据同步阶段应避开流量高峰期,避免造成master阻塞,影响业务正常执行
2:复制缓冲区大小设定不合理,会导致数据溢出。如进行全量复制周期太长,进行部分复制时发现数据已经存在丢失的情况,必须进行第二次全量复制,致使slave陷入死循环状态。
repl-backlog-size ?mb
- master单机内存占用主机内存的比例不应过大,建议使用50%-70%的内存,留下30%-50%的内存用于执 行bgsave命令和创建复制缓冲区
数据同步阶段slave说明
- 为避免slave进行全量复制、部分复制时服务器响应阻塞或数据不同步,建议关闭此期间的对外服务
slave-serve-stale-data yes|no
数据同步阶段,master发送给slave信息可以理解master是slave的一个客户端,主动向slave发送命令
多个slave同时对master请求数据同步,master发送的RDB文件增多,会对带宽造成巨大冲击,如果master带宽不足,因此数据同步需要根据业务需求,适量错峰
slave过多时,建议调整拓扑结构,由一主多从结构变为树状结构,中间的节点既是master,也是 slave。注意使用树状结构时,由于层级深度,导致深度越高的slave与最顶层master间数据同步延迟 较大,数据一致性变差,应谨慎选择
阶段三:命令传播
- 当master数据库状态被修改后,导致主从服务器数据库状态不一致,此时需要让主从数据同步到一致的状态,同步的动作称为命令传播
- master将接收到的数据变更命令发送给slave,slave接收命令后执行命令
命令传播阶段的部分复制
命令传播阶段出现了断网现象:
网络闪断闪连:忽略
短时间网络中断:增量复制
长时间网络中断:全量复制
这里我们主要来看部分复制,增量复制的三个核心要素
- 服务器的运行 id(run id)
- 主服务器的复制积压缓冲区
- 主从服务器的复制偏移量
- 服务器运行ID(runid)
概念:服务器运行ID是每一台服务器每次运行的身份识别码,一台服务器多次运行可以生成多个运行id
组成:运行id由40位字符组成,是一个随机的十六进制字符
例如:fdc9ff13b9bbaab28db42b3d50f852bb5e3fcdce
作用:运行id被用于在服务器间进行传输,识别身份
如果想两次操作均对同一台服务器进行,必须每次操作携带对应的运行id,用于对方识别
实现方式:运行id在每台服务器启动时自动生成的,master在首次连接slave时,会将自己的运行ID发送给slave,
slave保存此ID,通过info Server命令,可以查看节点的runid
- 复制缓冲区
概念:复制缓冲区,又名复制积压缓冲区,是一个先进先出(FIFO)的队列,用于存储服务器执行过的命令,每次传播命令,master都会将传播的命令记录下来,并存储在复制缓冲区
复制缓冲区默认数据存储空间大小是1M
当入队元素的数量大于队列长度时,最先入队的元素会被弹出,而新元素会被放入队列
作用:用于保存master收到的所有指令(仅影响数据变更的指令,例如set,select)
数据来源:当master接收到主客户端的指令时,除了将指令执行,会将该指令存储到缓冲区中
复制缓冲区内部工作原理:
组成
偏移量
概念:一个数字,描述复制缓冲区中的指令字节位置
分类:
- master复制偏移量:记录发送给所有slave的指令字节对应的位置(多个)
- slave复制偏移量:记录slave接收master发送过来的指令字节对应的位置(一个)
作用:同步信息,比对master与slave的差异,当slave断线后,恢复数据使用
数据来源:
- master端:发送一次记录一次
- slave端:接收一次记录一次
字节值
工作原理
- 通过offset区分不同的slave当前数据传播的差异
- master记录已发送的信息对应的offset
- slave记录已接收的信息对应的offset

流程更新(全量复制/增量复制)
我们再次的总结一下主从复制的三个阶段的工作流程:

心跳机制
什么是心跳机制?
进入命令传播阶段候,master与slave间需要进行信息交换,使用心跳机制进行维护,实现双方连接保持在线
master心跳:
- 内部指令:PING
- 周期:由repl-ping-slave-period决定,默认10秒
- 作用:判断slave是否在线
- 查询:INFO replication 获取slave最后一次连接时间间隔,lag项维持在0或1视为正常
slave心跳任务
- 内部指令:REPLCONF ACK
- 周期:1秒
- 作用1:汇报slave自己的复制偏移量,获取最新的数据变更指令
- 作用2:判断master是否在线
心跳阶段注意事项:
- 当slave多数掉线,或延迟过高时,master为保障数据稳定性,将拒绝所有信息同步
min-slaves-to-write 2
min-slaves-max-lag 8
slave数量少于2个,或者所有slave的延迟都大于等于8秒时,强制关闭master写功能,停止数据同步
slave数量由slave发送REPLCONF ACK命令做确认
slave延迟由slave发送REPLCONF ACK命令做确认
至此:我们可以总结出完整的主从复制流程:

主从复制常见问题
频繁的全量复制
- 伴随着系统的运行,master的数据量会越来越大,一旦master重启,runid将发生变化,会导致全部slave的全量复制操作
内部优化调整方案:
1:master内部创建master_replid变量,使用runid相同的策略生成,长度41位,并发送给所有slave
2:在master关闭时执行命令shutdown save,进行RDB持久化,将runid与offset保存到RDB文件中
repl-id repl-offset
通过redis-check-rdb命令可以查看该信息
3:master重启后加载RDB文件,恢复数据,重启后,将RDB文件中保存的repl-id与repl-offset加载到内存中
master_repl_id=repl master_repl_offset =repl-offset
通过info命令可以查看该信息
作用:本机保存上次runid,重启后恢复该值,使所有slave认为还是之前的master
- 第二种出现频繁全量复制的问题现象:网络环境不佳,出现网络中断,slave不提供服务
问题原因:复制缓冲区过小,断网后slave的offset越界,触发全量复制
最终结果:slave反复进行全量复制
解决方案:修改复制缓冲区大小
repl-backlog-size ?mb
建议设置如下:
1.测算从master到slave的重连平均时长second
2.获取master平均每秒产生写命令数据总量write_size_per_second
3.最优复制缓冲区空间 = 2 * second * write_size_per_second
频繁的网络中断
- 问题现象:master的CPU占用过高 或 slave频繁断开连接
问题原因
slave每1秒发送REPLCONFACK命令到master
当slave接到了慢查询时(keys * ,hgetall等),会大量占用CPU性能
master每1秒调用复制定时函数replicationCron(),比对slave发现长时间没有进行响应
最终结果:master各种资源(输出缓冲区、带宽、连接等)被严重占用
解决方案:通过设置合理的超时时间,确认是否释放slave
repl-timeout seconds
该参数定义了超时时间的阈值(默认60秒),超过该值,释放slave
- 问题现象:slave与master连接断开
问题原因
master发送ping指令频度较低
master设定超时时间较短
ping指令在网络中存在丢包
解决方案:提高ping指令发送的频度
repl-ping-slave-period seconds
超时时间repl-time的时间至少是ping指令频度的5到10倍,否则slave很容易判定超时
数据不一致
问题现象:多个slave获取相同数据不同步
问题原因:网络信息不同步,数据发送有延迟
解决方案
优化主从间的网络环境,通常放置在同一个机房部署,如使用阿里云等云服务器时要注意此现象
监控主从节点延迟(通过offset)判断,如果slave延迟过大,暂时屏蔽程序对该slave的数据访问
slave-serve-stale-data yes|no
开启后仅响应info、slaveof等少数命令(慎用,除非对数据一致性要求很高)
当主服务器不进行持久化时复制的安全性
在进行主从复制设置时,强烈建议在主服务器上开启持久化,当不能这么做时,比如考虑到延迟的问题,应该将实例配置为避免自动重启。
为什么不持久化的主服务器自动重启非常危险呢?为了更好的理解这个问题,看下面这个失败的例子,其中主服务器和从服务器中数据库都被删除了。
- 我们设置节点A为主服务器,关闭持久化,节点B和C从节点A复制数据。
- 这时出现了一个崩溃,但Redis具有自动重启系统,重启了进程,因为关闭了持久化,节点重启后只有一个空的数据集。
- 节点B和C从节点A进行复制,现在节点A是空的,所以节点B和C上的复制数据也会被删除。
- 当在高可用系统中使用Redis Sentinel,关闭了主服务器的持久化,并且允许自动重启,这种情况是很危险的。比如主服务器可能在很短的时间就完成了重启,以至于Sentinel都无法检测到这次失败,那么上面说的这种失败的情况就发生了。
如果数据比较重要,并且在使用主从复制时关闭了主服务器持久化功能的场景中,都应该禁止实例自动重启。
为什么主从全量复制使用RDB而不使用AOF?
1、RDB文件内容是经过压缩的二进制数据(不同数据类型数据做了针对性优化),文件很小。而AOF文件记录的是每一次写操作的命令,写操作越多文件会变得很大,其中还包括很多对同一个key的多次冗余操作。在主从全量数据同步时,传输RDB文件可以尽量降低对主库机器网络带宽的消耗,从库在加载RDB文件时,一是文件小,读取整个文件的速度会很快,二是因为RDB文件存储的都是二进制数据,从库直接按照RDB协议解析还原数据即可,速度会非常快,而AOF需要依次重放每个写命令,这个过程会经历冗长的处理逻辑,恢复速度相比RDB会慢得多,所以使用RDB进行主从全量复制的成本最低。
2、假设要使用AOF做全量复制,意味着必须打开AOF功能,打开AOF就要选择文件刷盘的策略,选择不当会严重影响Redis性能。而RDB只有在需要定时备份和主从全量复制数据时才会触发生成一次快照。而在很多丢失数据不敏感的业务场景,其实是不需要开启AOF的。
为什么还有无磁盘复制模式?
Redis 默认是磁盘复制,但是如果使用比较低速的磁盘,这种操作会给主服务器带来较大的压力。Redis从2.8.18版本开始尝试支持无磁盘的复制。使用这种设置时,子进程直接将RDB通过网络发送给从服务器,不使用磁盘作为中间存储。
无磁盘复制模式:master创建一个新进程直接dump RDB到slave的socket,不经过主进程,不经过硬盘。适用于disk较慢,并且网络较快的时候。
使用repl-diskless-sync
配置参数来启动无磁盘复制。
使用repl-diskless-sync-delay
参数来配置传输开始的延迟时间;master等待一个repl-diskless-sync-delay
的秒数,如果没slave来的话,就直接传,后来的得排队等了; 否则就可以一起传。
为什么还会有从库的从库的设计?
通过分析主从库间第一次数据同步的过程,你可以看到,一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件。
如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量复制。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。那么,有没有好的解决方法可以分担主库压力呢?
其实是有的,这就是“主 - 从 - 从”模式。
在刚才介绍的主从库模式中,所有的从库都是和主库连接,所有的全量复制也都是和主库进行的。现在,我们可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。
简单来说,我们在部署主从集群的时候,可以手动选择一个从库(比如选择内存资源配置较高的从库),用于级联其他的从库。然后,我们可以再选择一些从库(例如三分之一的从库),在这些从库上执行如下命令,让它们和刚才所选的从库,建立起主从关系。
replicaof 所选从库的IP 6379
这样一来,这些从库就会知道,在进行同步时,不用再和主库进行交互了,只要和级联的从库进行写操作同步就行了,这就可以减轻主库上的压力,如下图所示:

级联的“主-从-从”模式好了,到这里,我们了解了主从库间通过全量复制实现数据同步的过程,以及通过“主 - 从 - 从”模式分担主库压力的方式。那么,一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。
读写分离及其中的问题
在主从复制基础上实现的读写分离,可以实现Redis的读负载均衡:由主节点提供写服务,由一个或多个从节点提供读服务(多个从节点既可以提高数据冗余程度,也可以最大化读负载能力);在读负载较大的应用场景下,可以大大提高Redis服务器的并发量。下面介绍在使用Redis读写分离时,需要注意的问题。
- 延迟与不一致问题
前面已经讲到,由于主从复制的命令传播是异步的,延迟与数据的不一致不可避免。如果应用对数据不一致的接受程度程度较低,可能的优化措施包括:优化主从节点之间的网络环境(如在同机房部署);监控主从节点延迟(通过offset)判断,如果从节点延迟过大,通知应用不再通过该从节点读取数据;使用集群同时扩展写负载和读负载等。
在命令传播阶段以外的其他情况下,从节点的数据不一致可能更加严重,例如连接在数据同步阶段,或从节点失去与主节点的连接时等。从节点的slave-serve-stale-data参数便与此有关:它控制这种情况下从节点的表现;如果为yes(默认值),则从节点仍能够响应客户端的命令,如果为no,则从节点只能响应info、slaveof等少数命令。该参数的设置与应用对数据一致性的要求有关;如果对数据一致性要求很高,则应设置为no。
- 数据过期问题
在单机版Redis中,存在两种删除策略:
惰性删除
:服务器不会主动删除数据,只有当客户端查询某个数据时,服务器判断该数据是否过期,如果过期则删除。定期删除
:服务器执行定时任务删除过期数据,但是考虑到内存和CPU的折中(删除会释放内存,但是频繁的删除操作对CPU不友好),该删除的频率和执行时间都受到了限制。
在主从复制场景下,为了主从节点的数据一致性,从节点不会主动删除数据,而是由主节点控制从节点中过期数据的删除。由于主节点的惰性删除和定期删除策略,都不能保证主节点及时对过期数据执行删除操作,因此,当客户端通过Redis从节点读取数据时,很容易读取到已经过期的数据。
Redis 3.2中,从节点在读取数据时,增加了对数据是否过期的判断:如果该数据已过期,则不返回给客户端;将Redis升级到3.2可以解决数据过期问题。
- 故障切换问题
在没有使用哨兵的读写分离场景下,应用针对读和写分别连接不同的Redis节点;当主节点或从节点出现问题而发生更改时,需要及时修改应用程序读写Redis数据的连接;连接的切换可以手动进行,或者自己写监控程序进行切换,但前者响应慢、容易出错,后者实现复杂,成本都不算低。